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Recently generated ground state potential energy curves (PECs) for the nitrogen molecule, as
obtained with the reduced multireference (RMR) coupled-cluster (CC) method with singles
and doubles (RMR-CCSD), and its version corrected for the secondary triples RMR-CCSD(T),
using cc-pVXZ basis sets with X = D, T, and Q, as well as the extrapolated complete basis set
(cbs) limit (X. Li and J. Paldus: J. Chem. Phys. 2008, 129, 054104), are compared with both
the highly accurate theoretical configuration interaction PEC of Gdanitz (Chem. Phys. Lett.
1998, 283, 253) and analytic PECs obtained by fitting an extensive set of experimental data
(R. J. Le Roy et al.: J. Chem. Phys. 2006, 125, 164310). These results are analyzed using a
morphing procedure based on the reduced potential curve (RPC) method of Jenč. It is found
that an RPC fit of both theoretical potentials can be achieved with only a few parameters.
The RMR PECs are found to provide an excellent description of experimentally available vi-
brational levels, but significantly deviate from those of Gdanitz’s PEC for highly stretched
geometries, yet still do provide a qualitatively correct PECs that lie within the region delim-
ited by Le Roy’s analytical PECs.
Keywords: Reduced multireference coupled-cluster method; Reduced potential curve
method; Nitrogen molecule potential energy curves.

A quantitatively correct description of highly-excited ro-vibrational states
of molecular systems that is based on the Schrödinger equation for the nu-
clear motion requires a knowledge of accurate potential energy functions
defined over a wide range of vibrational displacements. Although such a
task is simple in principle, the actual determination of relevant potential
functions represents a rather challenging problem, both for experiment and
theory. A straightforward RKR inversion or fitting of experimental data is
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greatly limited by a notorious scarcity of required experimental data and
theoretically evaluated potential functions do not always possess a requisite
accuracy for spectroscopic applications.

A particularly difficult problem in a theoretical generation of potentials
arises when dealing with instances or states possessing a multireference
character, which require a proper treatment of electron correlation effects
due to the presence of quasidegeneracy. Although these problems may arise
already at the equilibrium geometry – as in the case of the beryllium dimer
where we encouter quasidegeneracy already in the atomic orbitals of the
unbound Be atoms (see, e.g., ref.1) – they invariably arise when dissociating
genuine chemical bonds into open-shell fragments or, in fact, for general
open-shell species as represented by various multiradicals (see, e.g., ref.2; for
a general account see, e.g., refs3–6). The problem becomes particularly severe
when breaking multiple bonds, as is the case for the nitrogen molecule.

All the above mentioned cases call for multireference (MR) type ap-
proaches, be they of the variational configuration interaction (CI) or
perturbative coupled-cluster (CC) variety. The MR CI approaches are con-
ceptually simple (see, e.g., refs7,8), but their convergence is generally very
slow, requiring an explicit consideration of a very large number of configu-
ration state functions. Moreover, while these approaches, with a proper
choice of reference configurations, can efficiently account for nondynamic
correlations, they are not size-extensive. For this reason, a plethora of em-
pirical Davidson-type corrections has been developed, particularly in the
MR case (see, e.g., refs8–13). On the other hand, the CI approaches can be
easily symmetry adapted and supply simultaneously an information about
the excited states. In contrast, the standard CC approaches are size-
extensive by their very nature (see, e.g., refs6,14,15, and references therein).
Yet, their most common single reference (SR) version with singles (S) and
doubles (D), the SR-CCSD method6,14,15, cannot handle static and non-
dynamic correlations or quasidegeneracy, while their MR varieties are gen-
erally more complex and their implementation is often plagued by various
shortcommings (intruder states, complete model space requirement, etc.).
For this reason the emphasis has been lately on the so-called state selective
or state specific (SS) approaches that exploit MR CC formalism, in one way
or another, but focus on one state at a time (for a brief overview, see, e.g.,
refs16,17). Both CI and CC approaches have been employed to generate
highly-accurate potential energy curves (PECs) for the nitrogen molecule.
In the CI case, the benchmark results were generated by Gdanitz18 by rely-
ing on the explicitly correlated (r12)-MR-CI(SD) or (r12)-MR-ACPF method.
In the CC case, rather accurate PEC’s for nitrogen were recently generated19
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by relying on the so-called reduced MR (RMR) CCSD approach20–22. This
method is of the externally-corrected (ec) variety4,14,23 and exploits an im-
portant subset of (primary) triples (T) and quadruples (Q) as provided by
a modest size MR CISD. The secondary triples are then accounted for via
the standard perturbative-type (T)-correction by the RMR CCSD(T) meth-
od24–26. While in most cases the use of 2 to 4 dimensional model space is
sufficient to account for nondynamic correlations, the breaking of a triple
bond in N2 required 56 dimensional reference space for a realistic descrip-
tion of the van der Waals region of geometries19. The computed vibrational
frequencies agree reasonably well with those obtained experimentally and a
qualitative agreement is also obtained with experiment-based analytic po-
tentials of Le Roy et al.27 (cf. Fig. 2 of ref.19).

In spite of the above mentioned successful generation of the N2 PECs,
there is no denying that serious computational problems arise when
solving the electronic Schrödinger equation in quasidegenerate situations,
often causing a serious departure from the correct shape of pertinent poten-
tial functions from their standard form (e.g., displaying a singular behavior
in the van der Waals region of geometries), thus making them unsuitable
for quantitative description of the fine features of ro-vibronic spectra in-
volving energetically high-lying vibrational states.

One of the general, yet practical ways of overcoming the above problems
consists in morphing approximate, but topologically correct, ab initio po-
tentials by fitting to accurate experimental data (see, e.g., refs28,29). Such
morphing procedure appears to be a suitable tool for a construction of mo-
lecular potentials, especially when it is combined with the reduced poten-
tial curve (RPC) method of Jenč30,31 or its generalizations32,33. Recently34,
for instance, this procedure has revealed the existence of the ‘elusive’
twelfth vibrational state of the beryllium dimer and its two rotational
states. Futhermore, this procedure allowed for a correct assignment of the
FTS spectra of highly excited, bound vibrational states of the lowest KRb
triplet solely on the basis of experimental scattering lengths (cf. ref.35). The
RPC based morphing procedure has already proved to be useful for probing
of earlier generated SR-CCSD and RMR-CCSD potentials36 that provide a
computationally affordable molecular PECs over a reasonably wide range of
vibrational distortions37. Importantly, performing a series of actual RPC
based morphings for molecular nitrogen has revealed that approximate
SR-CCSD and RMR-CCSD methods (see refs19,36 and references therein) can
provide a molecular potential that reproduces the available experimental
data nearly as quantitatively as the highly accurate, yet computationally
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demanding (r12)-MR-ACPF ab initio potential of Gdanitz18. Relying on the
agreement of morphings performed with potentials of a widely differing ac-
curacy, it was surmised that at least the (r12)-MR-ACPF variant should be ca-
pable of realistic predictions for the energy region that is significantly
outside the region of observed energies. However, this conjecture does not
appear to be strongly supported by results provided by the most recent
studies27,38, as may be seen from Fig. 1, where we compare deviations of
various empirical and theoretical18 vibrational levels from those implied by
the MLR4(6,8) potential of Le Roy et al.27. Thus, since a new set of highly
accurate RMR-CCSD potentials19 is now available for a ‘shape probing’,
we have found it worthwhile to revisite the previous RPC determination37

of the discussed potential with an emphasis on so-far unobserved high-
lying vibrational states.
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FIG. 1
Deviations (∆) of the literature energies from the MLR4(6,8) values determined by LeRoy et
al.27 (EPAPS Document No. E-JCPSA6-125-014638); v is the vibrational quantum number. RKR 1,
evaluated using the Dunham coefficients given in ref.27; RKR 2, evaluated using the Dunham
coefficients given in ref.38 (see Eq. (16)); Emp, empirically determined values (private commu-
nication from M. Lino da Silva); ACPF, evaluated using the (r12)-MR-ACPF potential of
Gdanitz18; Fit, values determined by morphing the (r12)-MR-ACPF potential of Gdanitz by fit-
ting to experimental data37



METHODS

The Reduced Potential

The actual determination of the sought potential function is performed in
two steps. First, a given (reference) ab initio potential energy function Vai(R)
is used to generate its reduced form u(ρ), which is defined as follows

u(ρ) = Vai(R)/D ai
e (1)

where D ai
e is the depth of Vai(R), and the reduced variable ρ is related to R

via the expression
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and, finally, the ‘universal’ reduced force constant κ is assumed to acquire
its recommended value of 3.96 (see ref.31).

In the second step, the reducing procedure is reverted by expressing V(R)
as the function of u(ρ), namely

V(R) = Deu(ρ), (5)

with ρ ≡ ρ(R) defined by
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and involving a priori unknown parameters De, Re, ρij, α, β, and γ, which are
to be determined by fitting the available experimental data. In other words,
the proposed reduced potential can serve as a six-parameter empirical po-
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tential. Unlike the usually employed empirical potentials, the reduced po-
tentials rely on a pointwise representation. Undoubtedly, on the one hand,
this necessitates a numerical smoothing, thus making their use less conve-
nient in comparison with analytically defined potentials. On the other
hand, however, in cases when the shape of the actual potential signifi-
cantly deviates from that of the standard empirical potentials, it is advanta-
geous to use a few-parameter reduced potential rather than standard
empirical potentials that usually require a much larger number of parame-
ters (see, e.g., ref.39).

Ab initio Calculations

The two ab initio potentials that are employed in our analysis differ signifi-
cantly in the required computational effort. The (r12)-MR-ACPF potential18

was generated using a very large [11s9p6d4f2g1h] basis set while account-
ing at the same time for cusp singularities by considering terms that are lin-
ear in the interelectronic (r12) coordinates. In view of the large basis set
employed the results were also corrected for the basis set superposition er-
ror (BSSE), which is quite significant at shorter internuclear separations. To
warrant approximate size-extensivity, the MR CI method was combined
with the MR-ACPF approach. Each iteration required ~8 h (with additional
~4 h for counterpoise correction) on Silicon Graphics Power Challenge
R8000.

In contrast, the RMR-CCSD and RMR-CCSD(T) methods20,24–26 are
computationally much less demanding. Indeed, these methods employ
a MR CISD wave function – based on as restricted a reference space as possi-
ble – that is used to generate a small subset of important (primary) three-
and four-body cluster amplitudes. This requires a rather modest computa-
tional effort. Once this small subset of primary triples and quadruples is
available, the evaluation of the required correcting terms (that are ne-
glected in the standard SR CCSD approach) is again computationally afford-
able in view of the fact that only linear terms in these amplitudes are
required and only a relatively small number of triples and quadruples is
involved (for the handling of the T1T3 terms as well as other details, see
ref.20,21). When these correcting terms have been evaluated, once and for
all, one has to solve only the standard SR CCSD equations. These calcula-
tions employed spherical Gaussian cc-pVXZ basis sets with X = D, T, and Q
(the largest one amounting to an atomic orbital [5s4p3d2f1g] set) and a
two- and three-parameter extrapolation to the “complete basis set” (cbs)
limit19. The actual RMR calculations were based on a 56-dimensional refer-
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ence space MR CISD, representing a minimal model space that can properly
describe the dissociation of a triple bond (i.e., is size-consistent). The re-
quired computational time took couple of hours per point on a standard PC
(for larger internuclear separations R a larger number of iterations was re-
quired). This enabled us to generate a dense grid in terms of the N–N inter-
atomic distances R (cf. Table A-1 of the Supplementary material) facilitating
a probing of the shape of the corresponding potentials in full detail and
thus to assess the capabilities of the RMR-type approaches to generate com-
putationally affordable potentials including significantly stretched geome-
tries. The resulting potentials, and also their ‘cbs’ extrapolated and reduced
forms, were smoothed using a combination of the exponential poly-
nomials, cubic splines and orthogonal polynomials. In spite of a thorough
search, no suitable empirical potential involving ‘only a few-parameters’
that would allow for a quantitative global fitting of the calculated ab initio
data was found. On the one hand, this indicates a fairly nonstandard shape
of the potential energy curve of N2 in its ground electronic state and, on
the other hand, gives a good reason for the use of the reduced potential
curve (RPC) approach.

As a matter of fact, unlike their VDZ and VQZ analogues, some of the
VTZ energies on the repulsive side of the potential do exhibit a sizable de-
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FIG. 2
Irregular behavior of the repulsive limb of the CCSD(T)/cc-pVTZ potential. T-X ≡ RMR-
CCSD(T)/cc-pVXZ, where X = D, T and Q



parture from a smooth behavior predicted by global fittings based on the
exponential polynomials. It should be stressed that the magnitudes of these
deviations obtained for the CCSD energies are found to be much larger
than for their CCSD(T) counterparts that are illustrated in Fig. 2. We have
therefore decided to discard the RMR-CCSD/ccpVTZ data from our analysis.

RESULTS AND DISCUSSION

We start by revisiting our earlier RPC determination of the probed poten-
tial. We thus first construct the (r12)-MR-ACPF based potential energy func-
tions by fitting the same experimental data that were employed by Le Roy
et al.27 (see the Supplementary material of ref.27). As expected (cf. ref.37),
such a RPC approach provides not only an essentially quantitative duplica-
tion of the fitted data while relying on only a three-parameter version of
the proposed scheme (a consideration of additional parameters has a negli-
gible effect; see Tables I and II). From the viewpoint of this study, it is even
more important that the fitted variants of the probed potential energy
function also predict highly excited vibrational states with a very high de-
gree of coincidence (i.e., a bijection between these sets of states). In fact, as
may be seen from the upper panel of Fig. 3, the dispersion (e.g., the stan-
dard or median quadratic deviation) of the (r12)-MR-ACPF energies as ob-
tained with a fixed value of the dissociation energy De = 79 845 cm–1

(referred to as the ‘interpolated’ energies) is smaller by about two orders of
magnitude than is the dispersion pertaining to the potentials produced by
Le Roy et al.27. As may have been expected (see the lower panel of Fig. 3),
the dispersion of the ‘extrapolated’ energies (i.e., those obtained when
allowing De to vary) is significantly larger than that of their ‘interpolated’
counterparts and, also not surprisingly, exhibits a small but non-negligible
mass dependence associated with the mass-dependent biasing of the statis-
tical weights of the fitted data.

This latter mass dependence, or at least some part of it, can be in princi-
ple attributed to the failure of the Born–Oppenheimer approximation
(BOA). Unfortunately, until an adequate information on the shapes of the
pertinent correcting terms (mass polarization, electronic angular momen-
tum, first and second derivatives with respect to R, see, e.g., ref.40) is avail-
able, the simple RPC scheme, as adopted in this study, is not capable of a
physically unambiguous rationalization of the discussed BOA failure. Nev-
ertheless, the (r12)-MR-ACPF RPC scheme appears to represent a suitable
and robust tool not only for predicting so-far unobserved vibrational states
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(see Table A-2 of the Supplementary material), but also for probing the
shapes of the RMR-CCSD potentials that we evaluate in this study.

The actual results concerning the probing of the RMR-CCSD potentials
are illustrated in Figs 4 and 5. We can see that on the one hand the RMR-
CCSD potentials do not provide reliable asymptotics (see the upper panel
of Fig. 4) and thus cannot be used for predictions of higher-lying ro-
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TABLE II
The RPC parameters determined by morphing the (r12)-MR-ACPF potentiala with relaxed De

Parameter Fit 1a Fit 2a Fit 3ac Fit 4ad Fit 5ae

Re, Å 1.097702 1.097690 1.097690 1.097689 1.097689

ρij, Å 0.744039 0.746501 0.746550 0.746307 0.746193

De, cm–1 80 048.27 79 819.70 79 815.06 79 838.40 79 848.04

α 1.0 1.001940 1.001970 1.001812 1.001706

β 1.0 1.0 1.0 1.0 1.0

γ, Å–1 0.0 0.0 0.0 0.0 0.0

S.D.b 0.050 0.040 0.038 0.017 0.013

a The potential taken from ref.18; the values of the fitted parameters are set in boldface.
b Standard deviation of the fit. c Statistical weights of the 14N15N and 15N15N data were
divided by 10. d Statistical weights of the 14N14N and 14N15N data were divided by 10. e Sta-
tistical weights of the 14N14N and 15N15N data were divided by 10.

TABLE I
The RPC parameters determined by morphing the (r12)-MR-ACPF potentiala with fixed De =
79 845 cm–1

Parameter Fit 1a Fit 2a Fit 3a Fit 4a Fit 5a Fit 6a

Re, Å 1.097689 1.097689 1.097688 1.097688 1.097690 1.097689

ρij, Å 0.746305 0.746227 0.746388 0.747174 0.745878 0.745695

De, cm–1 79 845 79 845 79 845 79 845 79 845 79 845

α 1.000893 1.001733 1.0 1.0 1.002426 1.0

β 0.999296 1.0 0.998548 1.0 1.0 0.997139

γ, Å–1 0.0 0.0 0.0 –0.002451 0.000972 0.002369

S.D.b 0.039 0.040 0.040 0.041 0.040. 0.040

a The potential taken from ref.18; the values of the fitted parameters are set in boldface.
b Standard deviation of the fit.



vibrational states (and certainly not for an accurate estimate of the dissocia-
tion energy). Here we must recall that since the RMR CCSD method em-
ploys a SR exponential Ansatz and all the terms in RMR CCSD equations are
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FIG. 3
Deviations (∆) of the (r12)-MR-ACPF vibrational energies from their Fit 1a reference values (see
Tables I and II); v is the vibrational quantum number
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FIG. 4
Deviations (∆) of the vibrational energies pertaining to the RMR-CCSD potentials from the Fit
1 (see Table I) reference values. VXZ implies cc-pVXZ, where X = D, T and Q; CBS pertains to
the potential energy curve obtained by extrapolating to the complete basis set limit using the
ccpVDZ and ccpVQZ potentials; subscripts ‘f’ and ‘r’ correspond to the results obtained with
fixed and relaxed values of De, respectively (see Tables A and B of the Supplementary material);
v is the vibrational quantum number



connected, it is size-extensive for all practical purposes (deviations amount
to a fraction of a millihartree; see, e.g., ref.41). Thus, a slight violation of the
exact size-extensivity arises due to a noniterative use of MRCI t3 and t4
amplitudes. When all t3 and t4 dependent terms are treated fully iteratively,
as in the plMR CCSD method42, the energies are exactly size-extensive (see
Sec. IV of ref.41). Moreover, in the RMR-CCSD approach, the t3 and t4 ampli-
tudes effectively represent all higher-excited amplitudes (using FCI 3- and
4-body amplitudes, the RMR-CCSD method recovers the FCI result) and the
fact that in the van der Waals region of geometries the MR CI primary 3-
and 4-body amplitudes may be expected to deviate more and more from
the FCI ones, as well as a less adequate representation of the secondary
triples the size of which will be augmented in this highly quasidegenerate
region of geometries, are likely the source of the above mentioned behav-
ior of PECs. Nonetheless, these potentials, especially those corrected for sec-
ondary triples via RMR-CCSD(T), allow for a rather accurate reproduction of
the experimentally available data using only a modest number of the fitting
parameters (see Fig. 5 and Tables A-3 and A-4 of the Supplementary mate-
rial). This documents the ability of RMR approaches to provide a correct de-
scription of the ‘lower’ part of the molecular potential energy functions
even for a highly challenging case of a triple-bond dissociation.

In closing this section, a few additional observations are in place. First,
we wish to emphasize the ability of the RMR-CCSD and RMR-CCSD(T) ap-
proaches to achieve, at least qualitatively correct description of the PEC of
nitrogen in the critical region of highly-stretched geometries. We recall that
this is a particularly challenging task for CC approaches, since the standard
SR-CCSD, and even more so the SR-CCSD(T) methods completely fail in
this regard. Indeed, a minimal reference space that is required to achieve
a triple bond breaking involves eight references43, yet a reasonably realistic
RMR-type description required 56 references. However, not all currently
available MR CC methods are capable of generating qualitatively correct
PEC for N2. In this regard, we point out to a very recent study44, which
shows that both the state-selective Mukherjee MR CC and Brillouin–Wigner
MR CC yield rather unsatisfactory results for the nitrogen molecule PEC
even when a CAS(6,6) reference space (which is equivalent to our 56-
dimensional reference space) is used.

We also recall that even careful empirical fits of all the available empirical
data, relying on diverse analytical forms, produced significantly different
PECs in this critical region of highly-stretched geometries27. It is thus en-
couraging that the RMR approaches yield PECs that nicely fit within the
region of energies traced out by these empirical analytical potentials (cf.
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Fig. 2 of ref.36). As far as we know, this is the only CC-type approach that
yielded at least a qualitatively correct PEC bridging the bonding and
dissociative regions of internuclear separations. This, however, could be
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FIG. 5
Deviations of the vibrational energies pertaining to the ‘relaxed’ RMR-CCSD or RMR-CCSD(T)
potentials (see Table B of the Supplementary material) from the Fit 1 (see Table I) reference val-
ues; v is the vibrational quantum number



only achieved by relying on a sizeable model space spanned by 56 refer-
ences, a much larger model space in comparison with the two- or four-
dimensional ones that are usually sufficient to describe single-bond dissoci-
ation process.

On the other hand, it is self-evident that once we consider the range of
highly stretched geometries, we are far away from spectroscopic accuracy.
Although the RMR-type approaches, at least when perturbatively corrected
for secondary triples, achieve a reasonably good description of experimen-
tally observed vibrational levels with v < 19, we find larger and larger devia-
tions from the most reliable (r12)-MR-ACPF theoretical values as the
internuclear separations increses. The lower part of the PEC seems to be
rather insensitive to the size of the basis set employed, even though the val-
ues extrapolated to the cbs limit certainly provide the best agreement. In-
terestingly enough, for v > 19 the VDZ and VQZ results start abruptly to
deviate from the ACPF reference values, the deviations having an opposite
sign (cf. Fig. 4), implying only a qualitative nature of these potentials in the
corresponding region of geometries. Clearly, a systematic use of larger basis
sets, such as the even-tempered ones, a proper account of the core and
core-valence correlations, as well as a careful extrapolation to the cbs limit
(see, e.g., refs45,46, and references therein for such extrapolations in the CI
context) would be desirable to further fine-tune the performance of the
RMR-type methods in this challenging region. Nonetheless, the above pre-
sented results, particularly the ability of the RPC method to represent the
RMR-type potentials with only a few parameters, are very encouraging. It
would thus be certainly worthwhile to perform more extensive calculations
and carry out their deeper analysis, to resolve the problem encountered
when employing VTZ basis set and, eventually, to account for finer effects
such as Born–Oppenheimer corrections, relativistic effects or long-range in-
teractions.

This work was a part of the research project Z40550506 and was supported by the Ministry of
Education, Youth and Sports of the Czech Republic (grant No. LC512) and the Czech Science
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